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SI-Cut: Structural Inconsistency Analysis for
Image Foreground Extraction
I-Chen Lin, Member, IEEE, Yu-Chien Lan, and Po-Wen Cheng

Abstract—This paper presents a novel approach for extracting foreground objects from an image. Existing methods involve
separating the foreground and background mainly according to their color distributions and neighbor similarities. This paper
proposes using a more discriminative strategy, structural inconsistency analysis, in which the localities of color and texture are
considered. Given an indicated rectangle, the proposed system iteratively maximizes the consensus regions between the original
image and predicted structures from the known background. The object contour can then be extracted according to inconsistency
in the predicted background and foreground structures. The proposed method includes an efficient image completion technique
for structural prediction. The results of experiments showed that the extraction accuracy of the proposed method is higher than
that of related methods for structural scenes, and is also comparable to that of related methods for less structural situations.

Index Terms—segmentation, picture/image generation, scene analysis
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1 INTRODUCTION

IMAGE segmentation is an essential technique in
computer graphics and vision. It involves assigning

a label to every pixel of an image such that pixels
that have similar visual characteristics have the same
labels. The most useful labels are foreground and
background labels. After the foreground is extracted,
the discrete pixels can be grouped as regions or ob-
jects, and they are useful in processes such as image
editing and synthesis, and object analysis.

Nevertheless, automatically segmenting precise
foreground regions from an image remains challeng-
ing. For specific types of subjects, such as people,
the difficulty of extraction can be alleviated by using
analyzed prior information [1]. By contrast, general-
purpose foreground extraction usually requires ad-
ditional cues from users or other information. For
instance, Rother et al. [2] used cues from additional
images containing an object identical to that in the
target image.

Among various strategies, interactive but intelligent
segmentation is regarded as one of the most feasible
because it requires only a single image and few user
indications. Boykov and Jolly [3] presented the inter-
active graph cut technique, in which users indicate
the foreground and background by drawing sparse
strokes. Each pixel in the image is treated as a node
in a graph. The contour can be shaped by minimizing
energy with respect to the color distributions from
indicated strokes [4]. GrabCut, which was proposed
by Rother et al. [5], further lessens user intervention
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and requires only an input bounding rectangle for
indicating the foreground. This method is an iterative
graph-cut procedure. In every iteration, Gaussian mix-
ture model (GMM) is employed in approximating cur-
rent foreground and background color distributions
to evaluate the contour. This procedure gradually
shrinks the foreground region until it satisfies the
termination criteria or is stopped by users.

Most existing methods entail labeling pixels accord-
ing to their color distributions and intensity simi-
larities between neighbors. They perform effectively
in separating objects with distinctive colors from the
background. However, they are less accurate when
the foreground and background color distributions
intermix. For instance, in Figs.1 and 2, the color dis-
tributions of the leopard and the background rock are
similar. GrabCut [5] segmented the scene substantially
according to the strength of neighbor links in the
graph, and, therefore, the tails and detail contours
were difficult to preserve, as shown in Fig. 2(a).
Lempitsky et al. [6] assumed that the bounding box
of the foreground is close to the indicated rectangle.
Their method involves expanding the GrabCut con-
tour when the distances between the bounding box
and the indicated rectangle are large. This expansion
reduces the excessive-shrinking problem that occurs
in GrabCut, as shown in Fig. 2(b).

The purpose of our proposed method is to extract
foreground objects from an image by using only
an indicated rectangle. In addition to lessening user
interaction, in automatic analysis and synthesis ap-
plications, a detecting system is easier to indicate a
bounding box than to draw precise strokes within a
target. Observation indicated that a region can be clas-
sified as a foreground according to two criteria: object
identification at the semantic level and structural in-



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (PREPRINT VERSION) 2

Fig. 1. Segmentation based on structural inconsistency analysis. Given an input image and rectangle, the
proposed system iteratively predicts the background structures and evaluates the inconsistent regions. The final
cut can be evaluated automatically or according to the iteration determined by users.

consistency (SI) with the background. Using the first
criterion requires high-level machine learning and is
beyond the scope of our study. This study focused
on the second criterion, SI. The term ”structure” is
defined as the expected variations in color and texture
according to spatial variations. For instance, a user
can detect a colorful balloon in front of a wall with
rainbow ribbons even when the color distributions of
the balloon and ribbons are similar. In other words, a
foreground pixel is distinct from the background not
only in the color spectrum but also in color-spatial
space.

However, background structures vary among im-
ages, causing the problem examined here to be highly
difficult. This paper proposes using an image com-
pletion technique to predict the background structure
within an indicated rectangle and using the inconsis-
tency to separate the possible background and fore-
ground regions. The detected background can be used
to refine structural predictions and segmentation. Fig.
1 illustrates the proposed concept.

The proposed system enables automatically esti-
mating the most likely foreground contour from a
sequence of iterations or evaluating the contour from
a user-designated iteration. The proposed method was
compared with state-of-the-art approaches applied
to two datasets from public sources. The results of
experiments showed that the contours for structural
scenes extracted using the proposed method were
more accurate than those extracted using the related
approaches, and the contours for less structural scenes
were comparable. Fig. 2 shows results of segmentation
executed using different methods. The results in (a)
and (b) were extracted from [6], and that in (c) was
extracted from [7]. Fig. 2(d) and (e) show the results
by the proposed method with auto-estimated (AE)
and user-assigned (UA) iterations. (The details of
iteration determination are described in Section 5.1).

The major contributions of this paper are: insight
into using structural inconsistency in foreground extrac-
tion, a novel framework for foreground extraction, and
an efficient method for background structural prediction.

(a) (b) (c) (d) (e)

Fig. 2. Segmentation using different methods. (a) Re-
sult of GrabCut [5]. (b) Result of Box-prior [6]. (c) Result
of One-cut [7]. (e) Result of the proposed method
(AE). (e) Result of the proposed method (UA). The red
curves represent the extracted foreground contours.
For visual comparison, the red channels of incorrectly
retrieved pixels and the blue channels of missing pixels
were enhanced.

2 RELATED WORK

This section first introduces state-of-the-art techniques
applied in interactive image segmentation and related
fields. Since the background structure is predicted
by an image completion technique in the proposed
method, several articles on that topic are introduced
as well.

Interactive segmentation and related topics - Sev-
eral studies have considered features other than color
distributions for image segmentation. Price et al.
[8] incorporated the geodesic distances from users’
strokes and their confidence weights into graph-cut
optimization. To improve stroke-based segmentation,
Zhou et al. [9] considered color and a texture descrip-
tor, representing the intensity change rate in a local
area, as the primary features. Neighbor links in the
graph are weighted according to the structure tensor.
An active contour is applied at the postprocessing
stage of the graph-cut procedure.

Nieuwenhuis et al. [10] combined the color and
spatial distributions of user-provided strokes. Their
method enables reducing the number of strokes for
images with overlapping distributions of foreground
and background colors. The awareness of color-spatial
distributions is similar to the proposed concept of
structure. However, when the color-spatial distribu-



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (PREPRINT VERSION) 3

tions were directly applied to the GMM in GrabCut,
the approximation of a high-dimensional GMM be-
came sensitive to the number of Gaussian compo-
nents.

The aforementioned methods involve estimating
the foreground and background appearance mod-
els according to user-indicated strokes. By contrast,
segmentation using an indicated rectangle can be
a difficult NP-hard problem, since a system must
concurrently estimate the appearance models and
boundaries of the foreground and background. Classic
methods [5], [6] involve using iterative procedures to
overcome this difficulty. Tang et al. [7] assumed that
the two color distributions are distinct and proposed
a distribution overlap penalty in the segmentation
energy function. This assumption enables solving the
problem in one cut.

Other research used different approaches for user
indication. Liu and Yu [11] required users to draw
one or more rectangles that predominantly contained
foreground objects. To increase discriminability in
segmentation, they proposed a multipass level-set
method in which edges, gradients, and color his-
tograms are considered. Lazy Snapping [12] entails
performing image cutout in two steps. In the first step,
the object of interest is specified using a few marking
strokes. The second step enables the user to edit
the object boundary by dragging polygon vertices.
Torsney-Weir et al. [13] developed a visual interface
that experts can use to tune parameters for medical
image segmentation.

By contrast, saliency detection methods involve ex-
tracting objects according to the distinctness in given
appearance models. Goferman et al. [14] detected
salient regions according to the occurrence frequency
of patches in various sizes and a visual perceptual
model. Shen and Wu [15] combined low-level seg-
mentation with high-level priors, such as faces and
warm colors. Cheng et al. [16] scored the saliency map
by the weighted sums of color and spatial distances
between regions. Perazzi et al. [17] took geodesic-
distance-based elements as bases for regional saliency
evaluation, and they retrieved the per-pixel saliency
by up-sampling. Yan et al. [18] addressed a scale
problem and fused saliency cues from multiple layers.

Image completion, which is also called inpaint-
ing, is a technique for filling holes or replacing un-
wanted objects in an image. Bertalmio et al. [19]
smoothly propagated colors from surrounding areas
in the isophote directions, but they did not reproduce
textures. Criminisi et al. [20] employed an exemplar-
based texture synthesis technique to propagate both a
linear structure and texture into the target region. The
mentioned methods involve considering only the local
surroundings, and the lines across the target holes
may not be connected correctly.

Shift-map editing, which was proposed by Pritch et
al. [21], involves regarding object removal or replace-

Fig. 3. Flowchart of the proposed SI-Cut framework.

ment as a region shifting problem. Each pixel in a
target hole has an unknown shift vector, and the goal
of Shift-map is to estimate the optimal shifting vectors
that fit for boundary and smoothness constraints.
Darabi et al. presented the image melding method
[22], in which a general patch-based optimization is
employed. They enriched the patch search space by
applying additional geometric and photometric trans-
formations. These two optimization methods gener-
ate impressive results and facilitate unknown region
estimation. For efficiency, the shift-map concept is
adopted and extended in structural prediction in the
proposed method.

3 OVERVIEW
3.1 Proposed Framework
The proposed segmentation framework, which is ab-
breviated as SI-Cut, is based on SI analysis. This
framework consists of two primary components: re-
gion exclusion according to SI and iteration analyzer.
These two components are iteratively applied un-
til the results satisfy the stop criteria. The iteration
analyzer outputs the contours from one or a range
of iterations. The contour optimizer component then
uses a graph-cut-based method to estimate the final
foreground contour. Users can optionally indicate to
the iteration analyzer when to stop the iterations. Fig.
3 depicts a flowchart of SI-Cut.

Subsection 3.2 introduces an essential subcompo-
nent, structural prediction. Subsection 3.3 describes
the efficient implementation of this subcomponent;
readers who are not interested in the details on the
subcomponent may skip that subsection. Section 4
presents the SI analysis. The iteration analyzer and
contour optimizer are presented in Section 5.

3.2 Formulation of Structural Prediction
The function of structural prediction, similar to that of
image inpainting, is to predict (fill) certain target re-
gions according to the reference regions. The input is a
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(a) 0th iter. (b) 1st iter. (c) (1+td)th iter.

Fig. 4. Iteratively updating the regions T , R, and
V . The excluded background in the ith iteration first
becomes the visible but unreferable region V i+1 and
then becomes R after td iterations.

color image Iin and a corresponding indication map.
The indication map indicates four types of regions:
T , R, V , and M . The region T is the target region to
be predicted; R is the reference source region, and
the proposed system can learn textures from R; V
is the visible but unreferable region and is used for
evaluating smoothness at the target borders, but the
proposed system does not learn textures from V ; M
is the masked region and can be skipped.

This prediction procedure is invoked for both back-
ground and foreground structures, and the indication
maps are varied among iterations. For example, in Fig.
4, the regions inside and outside the user-indicated
rectangle are initialized as the target and reference
regions, respectively. The proposed system iteratively
excludes regions from T . A region excluded in itera-
tion i becomes the region V i+1 for td iterations (td is
2 in the proposed system). Without loss of generality,
the example shown in Fig. 4(c) is used in the following
explanation.

The proposed prediction approach extends the con-
cept of shift vectors described in [21]. Given an indi-
cation map, each pixel p in the T has an unknown
shift vector s(p) directed toward a certain reference
point r(p) = p+ s(p) in R. The result intensity at p is
copied from r(p). An optimal prediction fulfils three
criteria. The first criterion is border consistency. Around
the border between T and V or R, the border transited
texture should be consistent with a certain texture in
the reference region R. The texture of a pixel p is
considered a window Wb(p) surrounding the pixel.
If any pixel u ⊂ Wb(p) overlaps with V ∪ R, then
its attributes (color intensities and gradients) should
be close to the attributes of a pixel u′ = u + s(p)
that has an identical relative position to r(p). Fig. 5(a)
illustrates the concept and notation.

The criterion is formulated as an objective term
Ebrd:

Ebrd =
∑
p

∑
u

(
λc|Iin(u)− Iin

(
u+ s(p)

)
|

+λg|∇Iin(u)−∇Iin
(
u+ s(p)

)
|
)
,

(1)

where u ⊂ (V ∪ R) ∩Wb(p)) and (p ⊂ T ); Iin is the
input color image; ∇Iin is the two-channel gradient
image of Iin; λc and λg are the normalized weights
for channel numbers. The CIE Lab color space was
adopted in this study, but it can be replaced by other
color spaces.

The second criterion is neighbor consistency. For a
pixel p ⊂ T and its adjacent neighbor q ⊂ T ,
even though their shift vectors s(p) and s(q) may be
different, the attribute transit from p to q should be
similar to the transit around their reference points and
vice versa. Fig. 5(b) illustrates the concept, which is
formulated as an objective term Enb:

Enb =
∑

(p,q⊂T )&(|p−q|=1)

enb(p, q), (2)

enb(p, q) = λc|Iin(r(p))− Iin
(
r(q) + (p− q)

)
|

+λc|Iin
(
r(p) + (q − p)

)
− Iin(r(q))|

+λg|∇Iin(r(p))−∇Iin
(
r(q) + (p− q)

)
|

+λg|∇Iin
(
r(p) + (q − p)

)
−∇Iin(r(q))|,

(3)

where the notation is identical to that used in (1).
The third criterion is the location penalty. When there

are multiple qualified reference candidates, keeping
the shift vector r(p) close to p is usually preferable.
This locality criterion is mainly designed for fore-
ground structural prediction described later. Because
the behavior of foreground prediction is highly sim-
ilar to extrapolation, this term can help target pixels
refer to nearby reference regions if there is no other
appropriate choice. It is also applicable to background
prediction, which is a user option. These constraints
are formulated as a piecewise linear function approx-
imating the sigmoid shape.

When x and y of the shift vector s(p) are less
than the constraints xfree and yfree, they do not

(a) (b) (c)

Fig. 5. Conceptual diagram for three prediction criteria.
(a) Border consistency. (b) Neighbor consistency. (c)
Location penalty.
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receive any penalty. When they are greater than the
constraint xmax and ymax, they receive high constant
penalties cx max and cy max. Otherwise, the penalties
are linearly interpolated according to their distances.
The objective term Eloc becomes

Eloc =
∑
p⊂T

Fxloc(p) + Fyloc(p), (4)

Fxloc(p) =


cx max , if |x(s(p))| ≥ xmax;

0 , if |x(s(p))| ≤ xfree;
cx max·(|x(s(p))|−xfree)

xmax−xfree
, otherwise.

(5)
, where, x(s) represents the x extraction function for a
vector s. Formulation of Fyloc(p) is similar to (5) but x
is substituted by y. Fig. 5(c) illustrates the concept and
its notation. The default values of xfree and xmax are
25% and 50% of the width of the indicated rectangle;
those of yfree and ymax are 15% and 45% of the
height of the indicated rectangle. A lower tolerance
in the y-direction is used, because it is observed that
homogeneous structures frequently occur at a similar
height.

The summary objective function is Epred:

Epred = wbrdEbrd + wnbEnb + wlocEloc, (6)

where wbrd, wnb, and wloc are the weights for objec-
tive terms. The default values of the first two terms
are 0.5 and 0.1875, and that of the final term can
be either 0 or 1. Compared with ShiftMap [21], in
which only directly connected borders and neighbors
are considered, the proposed prediction approach in-
volves considering a window for border consistency
and restricting the reference locations. The proposed
approach enables preserving more structures from
the reference regions and is applicable to structure
extrapolation.

3.3 Multilevel Prediction with Moves and Leaps

The aforementioned prediction approach is a graph-
based multilabeling problem. Equation 6 can be eval-
uated using the alpha-expansion method [4]. How-
ever, the alpha-expansion method entails decompos-
ing a multilabel graph-cut into multiple binary graph-
cut problems. Its complexity is approximately (la-
bel number)· O(binary graph-cut). Depending on the
implementation, O(binary graph-cut) is approximately
O(Nnode · Nedge · log(N2

node/Nedge)), where Nnode and
Nedge are the numbers of nodes and edges in the
graph.

For the configuration in Subsection 3.2, the label
number is approximately equal to the reference pixel
numbers |R|; the node number is equal to the target
pixel number |T |; the edge number is nearly two times
of the node number. An input image for segmentation
usually contains several hundred thousand pixels.

Fig. 6. Shift vector upscaling with local moves and
neighbor leaps for multilevel prediction.

Therefore, directly solving (6) requires a substantial
amount of computation time. Since all terms in the big
O are polynomially related to image pixel numbers, it
is reasonable to estimate (6) primarily at a downscaled
level and then to propagate the results (shift vectors)
back to the higher-resolution levels.

Given an image and its indication map, the pro-
posed system first iteratively downscales their widths
and heights by half (a quarter in size) until the target
pixel number |T | is lower than 600. At the lowest-scale
level, all reference regions can be considered reference
points, and the optimized shift vector of each target
pixel can be evaluated in less than 5 seconds.

To propagate a shift vector s(p) to the upper level,
the double of s(p) can be the initial vector of the adja-
cent upper level. At the upper level, for efficiency in
solving the alpha-expansion, a compact label space in-
stead of the entire reference regions must be selected.
The first possibility is to set the upscaled vector s(p)
and its eight neighbors NB(s(p)) as a label space for
pixel p. This label set is called local move, as shown in
the middle of Fig. 6, where the dashed arrow indicates
the double of the lower-level s(p). This label set was
used in [21], and these labels facilitate reducing zigzag
artifacts during upscaled optimization. Nevertheless,
considering only the local-move labels causes the
results in the upper levels to be biased by the decision
at the lowest level. Hence, additional labels called
neighbor leap are considered. These labels are the shift
vectors of four or eight neighbors of p, NB(p), and
are represented by the dotted arrows in the middle
of Fig. 6. They are especially useful for the regions
where shift vectors are diverse and ambiguous at the
lower level. While alpha-expansion is performed with
the combined move-and-leap (M&L) label sets, the shift
vectors can be upscaled and adjusted level by level to
the original image resolution.

Moreover, at a certain level, the initial shift vec-
tor from the lower level is not retained; instead the
estimated shift vectors are used as the new initial
guesses, and alpha-expansion is iteratively performed
multiple times by using the M&L label sets. Thus, it
increases the likelihood that the algorithm does not
become trapped in the local minimum (e.g., attempt-
ing multiple neighbor leaps). Consider Fig. 7 as an
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(a) (b) (c)

Fig. 7. Inpainting results obtained using different label
sets. (a) Input image and indicated rectangle. (b) Re-
sult obtained using the local move label set. (c) Result
obtained using the move-and-leap label set.

example. Fig. 7(a) is an input image in which the green
rectangle indicates the target region T . Multiple iter-
ations of alpha-expansion methods were performed
by using move and iterative M&L label sets for 10
seconds, respectively. Fig. 7(b) shows the result ob-
tained using the move labels. The result was acceptable
but exhibited visible stripes. Alpha-expansion using
move labels became trapped in the local minimum at
approximately the third second. By contrast, perform-
ing optimization by using the proposed M&L labels
continually lowers the objective value. The objective
value by using the M&L labels is two thirds of that
achieved by using move labels. The result achieved
by using iterative M&L labels is shown in Fig. 7(c).
When the naive single-level optimization was applied,
15 hours and 41 minutes were required to predict the
target region, which comprised 106,144 pixels.

4 STRUCTURAL INCONSISTENCY ANALYSIS

This section presents the SI feature, which is derived
from the structural prediction mentioned in Subsec-
tions 3.2 and 3.3. This section illustrates why the
feature is effective and describes how it can be used
in foreground estimation.

4.1 Background Structural Inconsistency as a
Classification Feature
Before the novel feature is introduced, Fig. 7(a) is
again used as an example, and the limitation of classi-
fication using the color GMM is illustrated. The initial
procedure of GrabCut [5] was applied to train the
foreground and background GMM according to the
pixels inside and outside the rectangle, respectively.
Fig. 8(b) shows the per-pixel classification results
(without neighbor connectivities). Pixels with higher
background probabilities are shown in red, pixels
with higher foreground probabilities are represented
in green, and pixels of which the probability differ-
ences are less than 1% are represented in blue. The
gray stripe belonging to the wall was classified as the
foreground, and a triangular region at the base of the

(a) (b) (c)

(d) (e) (f)

Fig. 8. Visualizing the discriminability when the color
GMM and structural inconsistency were applied. (Clas-
sified background in red, foreground in green, and
neutral in blue.) (a) Inconsistency values vbp between
Fig. 7(a) and 7(c). (b) Per-pixel classification using the
color GMM. (c) Graph cut with probabilities in (b). (d)
Per-pixel classification by applying a threshold at vtc20.
(e) Per-pixel classification by applying a threshold at
vtc40. (f) Graph cut with probabilities in (e).

vase was classified as the background because it is
white. When the probabilities were applied to the data
term in the graph cut, the segmentation shown in Fig.
8(c) was obtained. In this case, the GrabCut may still
be applicable when iterative color model refinement
is performed and strong neighbor links are present
across the rectangle border.

To enhance the discriminability of the per-pixel
classification and tailor classification to users’ expecta-
tions, this study proposes estimating the inconsistent
regions between the predicted background Ibp and the
input image Iin. The inconsistency value vbp at pixel
p is defined as the weighted summary of differences
between Ibp and Iin in a window W surrounding p:

vbp(p) =

∑
q⊂W (p) g(|q − p|) · |Ibp(q)− Iin(q)|∑

q⊂W (p) g(|q − p|)
, (7)

where g() is a Gaussian function for weighting. The
inconsistency values between Figs. 7(c) and 7(a) are
illustrated in Fig. 8(a).

The first approach developed involved mapping
the vbp value to the background probability by using
a zero-mean Gaussian function and using a certain
vbp value as the threshold for foreground candidates.
This threshold can be identified in a histogram of
vbp values. The top k% of the background consis-
tency value (the smallest k% of vbp) is abbreviated
as vtck. Figs. 8(d) and 8(e) illustrate the per-pixel
classification results obtained by applying thresholds
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(a) (b) (c)

(d) (e) (f)

Fig. 9. Resisting excessive background exclusion
through reverse structural prediction. (a) Per-pixel clas-
sification by applying a threshold at vtc50. (b) Binarizing
the per-pixel classification by vtc50. (c) Removing small
and isolated connected components. (d) Reverse pre-
dicted structure. (e) Inconsistency values obtained by
applying reverse structural prediction. (f) Marked map
of foreground candidates.

at vtc20 and vtc40, respectively. Applying a tighter
consistency threshold (e.g. top 20%) caused all true
foreground pixels to be retained, but only a few back-
ground regions were excluded. By contrast, applying
a wider consistency threshold (e.g. top 40%) caused
more background regions to be excluded and a few
foreground pixels to be included.

In this case, the per-pixel result obtained by apply-
ing a threshold at vtc40 is close to the ground truth
and can directly become a classification feature. For
instance, when the probabilities were applied to the
data term in the graph cut, the preliminary segmen-
tation was satisfactory as shown in Fig. 8(f). Never-
theless, the predicted background structure typically
contains imperfections that hamper the inconsistency
evaluation. In the following subsections, the per-pixel
SI classification result is used in an improved proce-
dure for adapting the analysis to various situations.

4.2 Reverse Structural Prediction as Resistance

When the aforementioned procedure is used, parts of
the true foreground can be considered the background
if the threshold is too loose. For example, Figs. 9(a)
and (b) show the per-pixel probabilities and their
binarized map when an overly aggressive threshold
vtc50 was applied, respectively. Although small and
isolated connected components were filtered out, as
shown in Fig. 9(c), parts of the vase were still excluded
from the foreground candidate. This problem is called
the excessive exclusion problem.

To address this problem, this study proposes exam-
ining not only the consistency of background struc-
tures but also the foreground consistency. The indi-
cation map was changed for reverse prediction. The
remaining foreground candidates in Fig. 9(c) then
became the reference R for structural prediction. The
background region within the rectangle became the
unknown T to be predicted. The region outside the
rectangle was masked as M . The reverse predicted
structure image Ifp is shown in Fig. 9(d). Similar to
the vbp, the inconsistency value of reverse (foreground
structural) prediction at pixel p is defined in (8). The
inconsistency values are shown in Fig. 9(e).

vfp(p) =

∑
q⊂W (p) g(|q − p|) · |Ifp(q)− Iin(q)|∑

q⊂W (p) g(|q − p|)
(8)

Instead of applying a threshold at a certain per-
centage of the background inconsistency value vtck,
this stage involves determining whether a pixel is
retained in the foreground candidates according to
its similarity to predicted background and foreground
structures. According to (9), a pixel p remains in the
current foreground candidates only if it has a lower
inconsistency value with respect to the predicted fore-
ground structure, and it is assigned a nonzero marked
value mrf :

mrf (p) =

{
1 , if vfp(p) ≤ vbp(p);
0 , otherwise. (9)

Comparison with reverse prediction can be re-
garded as the resistance to background exclusion. Fig.
9(f) shows the pixels marked according to (9) after
isolated components were filtered out.

4.3 Refining Inconsistent Regions
As mentioned previously, small and isolated compo-
nents are filtered out by executing two operations. The
first operation is region-size filtering. After connected
component labeling (CCL) is applied, the proposed
system identifies the largest nonzero regions and then
removes regions of which the pixel numbers are lower
than 20% of the largest number. The second opera-
tion is reference-reachable filtering. The border of the
indicated rectangle is used as the roots in applying
a depth-first-search to the background (zero) pixels.
The unreachable background pixels are transformed
into the nonzero pixels.

The proposed system subsequently performs an
additional operation, narrow-band graph-cut refinement.
Graph-cut optimization is used to smooth and slightly
refine the contour to fit local colors. Given foreground
regions F , this binary mask is eroded and dilated as
E and D by using a 3×3 block kernel. Pixel p ⊂ E is
set as the definite foreground, pixel p ⊂ (D−E) is set
as the neutral pixel, pixel p ⊂ D is set as the definite
background pixels, and graph cut is performed. This
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operation facilitates clarifying the cases in which the
foreground and background predictions are equiva-
lent in (9). This local tuning operation is different
from general graph-cut since the variable (neutral)
pixels are restricted in a narrow band along the given
contour.

4.4 Iterative Region Exclusion
As shown on the right-hand side of Fig. 3, a com-
plete stage of background region exclusion consists
of background-structure-based exclusion, foreground-
structure-based resistance and border refinement. To
apply this process in extracting various foregrounds,
this subsection presents an iterative framework in
a conservative strategy. In one iteration, only the
regions that are highly consistent (lower k in vtck)
and adjacent to the background are excluded. During
the iterations, the true background regions are grad-
ually extracted from the foreground candidates, and
the newly included background regions expand the
reference R and increase the accuracy of subsequent
prediction.

Fig. 10 illustrates the iterative exclusion of high-
consistency regions, showing only the zeroth, third,
and ninth iterations. The left column shows the input
image with the rectangle, and the red curves rep-
resent the temporarily assumed foreground contour
before exclusion. At the right-hand side of each row,
three small figures show (from the top to the bot-
tom) the classification achieved by using the color
GMM, the classification achieved by using vtc20, and
the inconsistency value image. In this test, the ini-
tial classfication achieved by using the GMM was
mostly incorrect, and the GrabCut implemented in
the OpenCV library [23] did not classify any pixel
as the foreground. The middle column shows the
structures predicted by the proposed method. Al-
though the prediction in the zeroth iteration was not
perfect, as more background regions were extracted,
the prediction in the ninth iteration was quite similar
to the true background structure. Furthermore, the
temporary foreground and background regions were
employed in color GMM training. Using the updated
regions enhanced the discriminability of the GMM
classifier, as shown in the ninth iteration.

5 OPTIMIZED CONTOUR FROM ITERATIONS

This section describes the stop criteria of the iterative
framework and how to identify the optimal fore-
ground contour from a sequence of iterations.

5.1 Iteration Analyzer
The most common criteria require that a procedure
stop at a maximum iteration number or at a minimum
variation threshold. These two criteria are included
in the essential stop criteria for the proposed method.

(a) the 0th iteration

(b) the 3rd iteration

(c) the 9th iteration
Fig. 10. Iteratively excluding consistent regions from
the foreground candidates. The red curves in the left
column show the foreground candidates before iter-
ation t begins (extracted at t-1); the middle column
shows the predicted background; the upper-right im-
age in each row shows the classification achieved by
using the color GMM (notation is explained in Fig. 8);
the middle-right image in each row shows the classifi-
cation achieved by using vtc20; the lower-right image in
each row is the inconsistency value image.

(a) 0th iter. (b) 1st iter. (c) 2nd iter.(d) 3rd iter. (e) 4th iter.

Fig. 11. Five of the six iteration results in region exclu-
sion of a sheep example. (Only the pixels within the
indicated rectangles are shown.) The corresponding
vtc20 values are shown in Fig. 12(a).

Another essential criterion concerns the bounding box
of the target region T , called BBox(T ). The region T
can also represent the region of the remaining fore-
ground candidates. When any side of the BBox(T ) is
too far from the indicated rectangle, the target regions
have been excessively shrunk. The system can termi-
nate the iterations to avoid superfluous computations.

Even when the mentioned stop criteria are applied,
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the contour extracted in the final (stop) iteration
may not always be close to the true foreground.
Fig. 11 shows an example, in which the red curves
indicate the contour of T . The orthogonal distances
between BBox(T ) and the input rectangle reached
the threshold in the fourth iteration, but the contour
has shrunk excessively. Conversely, the contour in
the second iteration is nearly identical to the ground
truth. To estimate the optimal iterations automatically,
we required users to identify the iterations they pre-
ferred the most and analyzed the correlations between
these iterations and various factors. Several factors,
such as the fitness of contours and image gradients
and discrimination between color distributions inside
and outside the contour, were examined. One of the
primary coefficients in SI evaluation, namely the top
k% consistent values, vtck, had an interesting charac-
teristic in various cases.

The vtc20 versus iteration number of examples is
plotted in Fig. 12, where the iterations preferred by
users are indicated by dotted circles. The shapes of
the vtc20 curves resemble a sigmoid function. These
curves consist of three main periods in the following
order: low-level, rising, and high-level periods. The
preferred iterations occur at the transition points be-
tween the rising and the high-level periods.

During background structural prediction, the high-
consistency regions are typically close to the contour
of the initial target T . Therefore, the magnitude of
vtck is related to the structural predictability of the
target regions near the current foreground-candidate
contour. This characteristics is discussed by using
the sheep example shown in Figs. 11 and 12(a). In
the zeroth and first iterations shown in Fig. 11, the
initial T regions are the input rectangle and the
zeroth contour, respectively. The regions near these
two contours T mainly consisted of grass. Therefore,
predictions regarding these regions were highly con-
sistent, resulting in low vtc20 values. However, after
exclusion in the first iteration, only the grass regions
near the sheep’s legs were predictable according to the
reference R; hence, the vtc20 in the second iteration
markedly increased. After the second iteration, no
background region was located inside T , and the
vtc20 in the third iteration further increased slightly.
Subsequently, excessive shrinking occurred. Parts of
the true foreground were included in the reference R.
The vtc20 slightly decreased.

As shown in Fig. 12, the iterations preferred by
users occurred at two points:

1) The point with a negative d2(vtck)
dt2 after a se-

quence of points with a high d(vtck)
dt .

(t represents the iteration id)
2) The point in front of points with the highest

values.
Applying these two rules typically results in identi-

cal or adjacent iterations. In a few cases, the transition

points in the curve were ambiguous, but they still
remain within the point interval defined by these two
rules. Fig. 13(a) shows a vtc20 curve of an image of
a woman. The optimal interval of iterations rather
than the optimal single iteration was determined.
The process is described as follows. After applying a
bilateral filter to the vtck curve, the proposed system
first identifies the iteration with the highest value, th.
The th and its derivative are used to form a tangent
line lh. The system then backward searches the first
iteration of which the distance to lh is lower than
a threshold and sets the iteration tbb. Besides, the
system forward searches the first iteration of which
the second-order derivative on the curve is negative
and lower than a threshold. The iteration is set as
tfb. Figs. 13(b) and 13(c) show the optimal forward
and backward iterations estimated using the iteration
analyzer. Please refer to the pseudo code listed in the
supplementary document for details.

5.2 Graph-based Contour Optimization
The next procedure is to estimate the single optimal
foreground contour Fgco. Subsection 4.3 introduces
narrow-band border refinement, in which the contour
∂F is refined within the band between the erosion
and dilation of the given region F . The operation
here is similar, but it is applied over a wider interval
and can be called wide-band contour optimization. The
foreground regions of iterations tfb and tbb are Ffb and
Fbb. Since the SI-Cut framework is based on region
exclusion, Fbb ⊆ Ffb, and Fbb should be the inner
bound of the final region Fgco. To alleviate the effects
of prediction error and other types of noise, Fbb is
eroded by ke iterations as Ebb, and its contour ∂Ebb is
indicated as the definite foreground. By contrast, Ffb

should be the outer bound of Fgco; likewise, Ffb is
dilated by kd iterations as Dfb, and its contour ∂Dfb

is indicated as the definite background. The terms ke
and kd are proportional to the minimum side and
perimeter of the input indicated rectangle. In addition,
the number of ke is restricted to avoid losing the strip-
shaped regions (e.g., the leopard’s tail).

In narrow-band refinement, the region inside ∂E is
retained as definite foreground to ensure prediction
stability. At this stage, a robust contour enables the in-
terior pixels to join the graph-cut optimization. Here,
the region inside ∂Ebb is indicated as the probable
foreground and becomes variable nodes in graph
cut. Fig. 13(d) is an indication map for graph-cut
computation. Fig. 13(e) depicts the optimized contour,
where the background regions around the elbows
are unmarked. Users can choose whether to set the
interior regions as the variable nodes.

5.3 Extended SI-Cut
The aforementioned primary SI-Cut procedure is ef-
fective in most situations. However, fewer than 5%
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(a) (b) (c) (d)

Fig. 12. Four examples of the top 20% consistent values (vtc20) versus the iteration id. The red dotted circles
show the iteration most preferred by users.

(a) vtc20 versus iteration id

(b) 5th iter. (c) 9th iter. (d) Ind. map (e) Opt. cut

Fig. 13. Optimized contour from the auto-selected
optimal forward and backward iterations. (d) Graph-cut
indication map. (White: definite foreground; light gray:
probable foreground; medium gray: neutral; dark gray:
probable background; black: definite background.)

of the samples did not directly fit this procedure.
Fortunately, these images can be segmented by exe-
cuting extended passes of the SI-Cut procedure with
few modifications. Figs. 14(a), (b) and (c) show the
first to third iterations of an example of region exclu-
sion performed using the primary SI-Cut procedure.
When either a tight or loose bounding-box distance
constraint was applied, the person’s head could not be
retained in the foreground candidates. The optimized
cut Fgco is shown in Fig. 14(d). This problem also
occurs in GrabCut.

To extend the SI-Cut result, the proposed system
can set a new indicated rectangle at the top region,
when the BBox(Fgco) is far from the rectangle border.
The Fgco is then indicated as a masked region. Fig.
14(e) shows the indication map for the extended SI-
Cut procedure at the top region. In addition, an
extended masked region called sprout is added to
the top of Fgco. The sprout is a short rectangular

(a) (b) (c) (d) (e)

(f) (g) (h)

Fig. 14. Extended SI-Cut for an image of a person. (a),
(b), and (c) are the contours of the 1st, 2st and 3rd itera-
tions in primary region exclusion. (d) Optimized contour
of primary SI-Cut. (e) Indication map for extended SI-
Cut (white: target region; gray: masked region; black:
reference region). (f) The 1st and 3rd iterations in ex-
tended region exclusion. (g)The 5th and 7th iterations
in extended region exclusion. (h) Optimized contour of
extended SI-Cut.

mask emitting from the barycenter of the top masked
region. Its direction is along the outward gradient
of the top ∂Fgco. During reverse structural predic-
tion, these masked regions become the references.
The texture of the sprout can be propagated to the
nearby reverse target region and hence, prevent the
head from being excluded as a background region.
Figs. 14(f) and (g) show four exemplary iterations of
the extended region exclusion procedure. The final
extended SI-Cut iteration is shown in Fig. 14(h). The
proposed extended SI-Cut can be used for top, down,
left, or right regions according to their distances to the
rectangle. This extension computation is automatic.
Since the requirement of an extended procedure is
rare, using the extension is an option for users.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (PREPRINT VERSION) 11

5.4 Utilities

This final subsection describes options that increase
the efficiency and smoothness of the iterative pro-
cedure. First, since the computational complexity of
predictions is related to the reference region R, the
reference region can be restricted within a fixed scale
window with respect to the indicated rectangle (e.g.,
3 times in width and height). Second, the contours
extracted in the first one or two iterations usually
do not reach the foreground contour. The threshold
vtck can be boosted (e.g., from 20% to 25% or 30%)
in the early iterations. The early boosting utility can
reduce the number of iterations. For images with only
a few reference regions (e.g., the borders of input
images and indicated rectangles are close), the vbp of
pixels near the reference regions can be lowered. This
function can cause those pixels to become references
for further structural prediction earlier and does not
affect the high-inconsistency regions.

6 EXPERIMENT AND DISCUSSION

6.1 Comparisons

The proposed method was compared with three re-
lated state-of-the-art methods: GrabCut [5], the pin-
point method with a bounding box prior [6] (abbre-
viated as Box-prior), and the GrabCut in one cut [7]
(abbreviated as One-cut). These three methods are de-
signed for segmentation using an indicated rectangle.
To evaluate the discrimination of each method, we
followed the related articles and calculated the error
rate of pixels within the indicated rectangle (originally
unlabeled pixels).

6.1.1 Comparison Using a Structural Scene Dataset
A structural scene dataset containing forty images
was collected from the public LabelMe dataset [24],
in which the ground-truth masks are marked by
users. Several images are challenging for segmenta-
tion because the distributions of the foreground and
background colors overlap. For experimental com-
parison, we adopted the GrabCut procedure imple-
mented in the OpenCV library [23], and the OpenCV
GrabCut program was extended to replicate the Box-
prior method. In addition, the One-cut method was
reproduced. The error rates of the One-cut method
varied according to the smoothness weight. Therefore,
we evaluate the results of the One-cut method by two
types, One-cut (GW) and One-cut (IW), using different
parameter settings. The generally optimal-weight (GW)
type involved using an identical optimal weight for all
images, and the individually optimal-weight (IW) type
entailed using the individually adjusted weight for
each test image.

To clarify the capabilities of the proposed method
in automatic and interactive use, the results of the
proposed method were separated into two types, the

proposed (AE) and the proposed (UA), according to the
input. In the auto-estimation (AE) type, the proposed
system estimated the optimal iterations and contour
as described in Subsections 5.1 and 5.2 with fixed
BBox constraints (11% for the long side length; 16%
for the short side length). In the user-assigned (UA)
type, four volunteers participated in the experiments
and determined the iterations that they preferred.
Each preferred iteration then became the optimal
forward and optimal backward iterations for contour
optimization. For each test image, the majority cut
(iteration) selected by volunteers was added to the UA
result pool. When the cuts were diverse, the median
iteration from users’ selections was added.

For each test image, the indicated rectangle was
identical in all methods. Fig. 15 shows four examples
from the structural scene dataset. In the statue and
glass examples, GrabCut and One-cut results exhib-
ited excessive shrinking. The Box-prior method com-
plemented the deficiencies, and the proposed methods
generated fitted contours. In the desk lamp example,
GrabCut misclassifed the lamp stand and shaded
wall. The lamp stand was not extracted in One-cut
result because of the assumption of less color overlap.
The proposed (AE) method yielded moderate results
with few defects. In the proposed (UA) method, the
base of the lamp stand was estimated by using the
extended SI-Cut procedure. In the sofa example, the
carpet and the sofa are similar in color but different
in structure. GrabCut stopped at a contour far from
the true foreground. Table 1 lists the error rates of the
methods in segmenting the images from the structural
dataset.

TABLE 1
Average error rates of methods for the structural

scene dataset.
Method Error rate (%)

The proposed (AE) 4.591
The proposed (UA) 3.906

Grabcut 12.332
Box-prior 10.418

One-cut (GW) 9.493
One-cut (IW) 7.292

6.1.2 Comparison Using a Related Dataset
To evaluate the performance of the proposed method
when applied to scenes that are less structural or
more color-dominated than those in the structural
dataset, experiments were conducted using the Grab-
Cut dataset [5]. In this comparison, the AE input type
was subdivided into unextended (unext.) and extended
(ext.) types. The unextended type was identical to the
previous AE type, in which the system automatically
estimated the iterations without executing extended
procedures. For the extended type, users can turn
off the bounding box distance constraints and can
enable the extended SI-Cut procedure, but the optimal
iterations were still estimated automatically.
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Fig. 15. Comparative results for the structural scene
dataset. From left to right: Input images and rectan-
gles, GrabCut results, Box-prior results, One-cut (IW)
results, the proposed (AE) results, the proposed (UA)
results.

Fig. 16. Comparative results for the GrabCut dataset.
From left to right: Input images and rectangles, Grab-
Cut results (from [6]), Box-prior results [6], One-cut
results [7], the proposed (AE) results, the proposed
(UA) results.

Fig. 16 shows three examples for the GrabCut
dataset. Results used for comparison were extracted
from the original or subsequent papers of the authors.
Table 2 lists the error rates for the entire GrabCut
database. As emphasized in [6], the error rates re-
ported here are based on bounding-rectangle inputs.
They are not appropriate for comparison with error

TABLE 2
Average error rates of methods for GrabCut dataset.

Method Error rate (%)
The proposed (unext.) 4.693

The proposed (ext.) 4.250
The proposed (UA) 3.756
GrabCut (from [6]) 7.2

Box-prior [6] 3.7
One-cut [7] 6.71

One-cut (IW) 5.346

rates of related methods based on the trimap or
scribble inputs.

In the unextended type of the proposed method,
a bounding box distance constraint identical to that
applied to the structural dataset was used, the method
performed mostly satisfactory. However, for three test
images listed in the supplementary document, the
method stopped at inappropriate iterations. When
extended SI-Cut was enabled in these cases, the per-
formance of the proposed method was comparable
to that of the Box-prior method. Please refer to the
supplementary file which provides more comparisons
of these methods using these two datasets.

6.2 Performance

The experiments were performed on a desktop com-
puter with an Intel 3.4-GHz CPU and 8-GB mem-
ory. Structural prediction was formulated as a multi-
labeling problem, and the system included an alpha-
expansion library developed by Veksler et al. [4], [25],
[26] for label optimization. For the subcomponents re-
lated to binary graph-cut problems, including narrow-
and wide-band contour optimization, the graph-cut
was modified from GrabCut in OpenCV [23]. Cur-
rently, the proposed system is implemented in a single
thread and does not yet use the multi-core capability.

When SI-Cut was applied to the two aforemen-
tioned datasets, the average iteration number for one
input image was 9.689. The average optimal backward
iteration id (tbb) was 6.189 and can be regarded as
the final effective iteration id for the final contour
optimization. The average time distribution for one
iteration is listed in Table 3. Before exporting the final
cut, the system required an average of 2.791 seconds
for wide-band contour optimization.

Table 3 illustrates that background structural pre-
diction accounted for approximately 58% of the com-
putations. The reverse prediction required few com-
putations because its reference and target regions
were small. The remaining computation time was
mainly used for narrow-band graph-cut refinement.
It can be roughly thought that the multilevel predic-
tions performed in the proposed method require a
computation time 2.93 times of the general graph-cut
computation time for one iteration. For an identical
image, the iteration number of the proposed method
is generally two to four times of the GrabCut iteration
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TABLE 3
Average computation time per SI-Cut iteration.

(seconds) Bg. pred.a Fg. pred. b GC. and others c

Time per iter. 6.324 1.712 2.742

a. Background structural prediction.
b. Reverse foreground structural prediction.
c. Other computations. The time is dominated by graph-cut

refinement.

number. In the paper proposed Box-prior method
[6], the authors reported that their recommended fast
pinpoint method is one to fifteen (typical one to four)
times slower than the conventional graph-cut method
for an identical image. The computation time of One-
cut method [7] is approximately one half to six times
of the total GrabCut computation time.

6.3 Discussion

According to the results of the experiments, the ad-
vantages and limitations of the four methods are
discussed as follows. GrabCut is among the most com-
monly used extraction tools and the first rectangular-
input-based segmentation method. It is efficient and
effective for images with distinctive GMMs. When the
distributions are ambiguous, the regions can be exces-
sively shrunk or the iterative procedures can stop at
an early stage. The Box-prior method entails applying
a bounding box prior to the GrabCut framework and
solving the excessive shrinking problem. This method
generates remarkable results for the GrabCut dataset,
but the pinpoint strategy is mainly dependent on the
color distributions.

The recently developed One-cut method involve pe-
nalizing overlap between foreground and background
histograms. This new assumption makes rectangle-
input-based segmentation determinable in one iter-
ation. The results of the experiments showed that
the One-cut method can generate several impressive
results for both datasets with fine histogram bins,
but the results varied according to the parameters.
Therefore, in the reproduced One-cut (IW) method,
we fixed the bin number at 1283 or 2563 and exhaus-
tively searched the weights for individual images.

Unlike the related methods, the proposed method
has a novel SI feature addressing the aforementioned
situation in which colors are intermixed. The pro-
posed framework performed satisfactorily in seg-
menting structural scenes. Since the proposed method
does not rely heavily on strong neighbor links a
graph, the method typically obtains more detailed
contours. A notable advantage of segmentation by SI
regions is that its results are insensitive to different
rectangle sizes for scenes containing nearly homoge-
neous structures. As the officer and church examples
shown in the supplementary file (sup. Fig. 8, 11), even
applying indicated rectangles which are several times

larger than the original ones, the segmented results
are still satisfactory. By contrast, the One-cut method
had to apply different weights to reach similar qual-
ities, and the Box-prior method was not applied to
these cases since they do not conform to the bounding
box prior assumption. Moreover, since the proposed
region exclusion is resisted by reverse (foreground)
structural prediction, the proposed method can also
tolerate slight contraction of rectangles (sup. Fig. 8 to
11). On the other hand, when an indicated rectangle
is too large and covers other objects (e.g the white
flower above the target in sup. Fig. 10) or a rectangle
is too small (e.g. the Church facade in sup. Fig. 11),
the proposed method still fits the contours for the high
inconsistent regions.

The proposed method has a few limitations. The
iteration analyzer tends to find the iterations of large
SI value change without other prior knowledges. In
most cases, the AE iterations were similar to the UA
ones. However, for the boat case in sup. Fig. 7, the
auto analyzer chose an more inconsistent contour
and excluded the left sail. For this problem, it is
possible to include additional criteria (e.g. region size
penalty) or to generate multiple contour candidates
for users or other automatic recognition systems to
choose. Besides, the background structures of a few
images are difficult to be accurately predicted from
the references outside the rectangles, the exclusion
progress can become inefficient. Notwithstanding, the
results of the proposed method are still comparable to
those of other methods.

There are several possible extensions of the pro-
posed work. The SI-Cut framework is flexible and
exhibits high potential to cooperate with other meth-
ods. Several methods and concepts in segmentation
according to strokes or other inputs, such as the
geodesic distance in [8], fitting structure tensors in [9],
and the level set and edge field in [11], may be appli-
cable in the local contour refinement. The proposed SI
features can also complement other features in related
frameworks. In addition, inconsistency estimation can
be improved by employing more advanced or efficient
structural prediction methods in the future. Another
possible future work is for saliency detection. Tang
et al. [7] combined their histogram overlap criterion
with the smoothness and the saliency data term esti-
mated by [17] for a salient object database [27][28]. By
contrast, the proposed work currently requires a part
of definitely background regions for structural predic-
tion, and it cannot directly be applied to improve the
saliency map. It is worthwhile studying how to apply
the SI concept to saliency detection.

7 CONCLUSION

This paper proposes analyzing structural inconsis-
tency in images to execute foreground extraction. This
novel method integrates efficient image completion
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and graph labeling techniques into a powerful frame-
work. The method involves considering not only col-
ors but also textures and their localities. It can be
automatic or intervened by users. The results of the
experiments showed that the proposed system can
extract accurate contours from input images with an
indicated rectangle. It is highly effective in segment-
ing structural scenes and is still comparable to related
methods in segmenting less structural scenes.
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